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Abstract

Diffusion imaging gradients serve to spectrally filter the temporally evolving diffusion tensor. In this framework, the design of diffu-
sion sensitizing gradients is reduced to the problem of adequately sampling q-space in the spectral domain. The practical limitations
imposed by the requirement for delta-function type diffusion-sensitizing gradients to adequately sample q-space, can be relaxed if these
impulse gradients are replaced with chirped oscillatory gradients. It is well known that in many systems of interest, dispersion of velocity
will itself produce a peak in the velocity correlation function near w = 0, while restricted diffusion will manifest itself in the dispersion
spectrum at higher frequencies. In this paper, chirped diffusion-sensitizing gradients are proposed and analytically shown to yield an effi-
cient sampling of q-space in a manner that asymptotically approaches that using delta-function diffusion-sensitizing gradient. The chal-
lenge is the consequent reduction in diffusion sensitivity as one probes higher frequency dynamics. This problem is addressed by
restricting the gradient power to a spectral bandwidth corresponding to the diffusion spectral range of the underlying restrictive geom-
etry. Simultaneous imaging of diffusion and flow at microscopic resolution and at temporally resolvable diffusion time scales thus
becomes possible in vivo. Simulations and experiments validate the proposed approach.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In a classic pulse gradient spin–echo (PGSE) experiment
originally proposed for the measurement of self-diffusion
[1], the resulting echo amplitude and phase depend on the
nuclear spin velocity correlation function known as the
self-diffusion tensor DðwÞ. The signal in an NMR diffusion
experiment can thus be expressed in terms of the spectral
diffusion tensor DðwÞ and the spectral density SðwÞ of the
diffusion-sensitizing gradient as [2]:

EDðtÞ ¼ Eð0Þ exp
1

2p
c2

Z 1

�1
DðwÞSðw; tÞdw

� �

¼ Eð0ÞeaðtÞ ð1Þ
with the spectral diffusion tensor DðwÞ, defined as the Fou-
rier transform of the velocity autocorrelation function [8],
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Di;jðwÞ ¼
1

p

Z 1

0

expðiwt0Þ < viðt0Þvjð0Þ > dt0 ð2Þ

where i and j may take on each of the Cartesian directions
x, y and z resulting in a symmetric 3� 3 tensor and, the
power spectral density of the diffusion gradient Sðw; tÞ is gi-
ven by:

Sðw; tÞ ¼ 1

w2

Z 1

0

expð�iwtÞcg�ðt0Þdt0
����

����
2

¼ jgðw; tÞj
2

w2
ð3Þ

Now, the full 3 dB spectral range (wdB) of diffusion spec-
trum DðwÞ is proportional to the mean free diffusion
step time sC such that wdB ¼ 2p=s�1

c and við0ÞvjðtÞ ¼ v2
j exp

ð�t=scÞ. The above analysis shows that the design of a dif-
fusion encoding gradient is similar to that of designing a fil-
ter. The encoding gradient gðtÞ effectively filters the
diffusion dynamics more on this later.

With the assumption of a narrow gradient limit such
that d� D while keeping the product gd finite, the attenu-
ation of the spin–echo has an explicit relationship to the
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spectral density DijðwÞ of the translational motion. This
narrow gradient approximation is helpful since it allows
one to use the propagator formalism to describe the result
of the PGSE experiment for restrictive diffusion. In this
narrow gradient formulation, the echo attenuation func-
tion is inverted to yield an image of the average
propagator.

Using the conditional probability P sðrjr0; DÞ that a mol-
ecule starting at position r will move to position r0 over a
time interval D, we may write the echo attenuation as [7]:

Eðq;DÞ ¼ qðrÞP ðrjr0;DÞ exp½i2pq � ðr0 � rÞ�dr dr0 ð4Þ

where qðrÞ is the spin density, q is the reciprocal wave vec-
tor ð2pÞ�1cgd and P ðr; DÞ is the probability that a molecule
at any starting position is displaced by R ¼ r0 � r over time
interval D. Hence in the narrow gradient limit, there exist a
Fourier transform relationship between the amplitude of
the echo and the average propagator describing the spec-
trum of random displacements.

This relationship exists as long as the q-wave vector is
not a function of the spin displacement vector ~R. In the
Fig. 1. Evolution of the magnetization helix wave vector q in a standard PGS
indicating that the diffusion displacement occurring after steady-state (t = 0+) a
the q-wave vector increases linearly towards its steady-state value.
very short pulse regime (d! 0), this condition is easily sat-
isfied. However, in practice, d is fairly large relative to D
and under such conditions, q is a spatial–temporal wave
vector (i.e. q ¼ qð~R; tÞ) and hence the Fourier transform
relationship between the echo signal and the diffusion
propagator P sð~R; DÞ does not hold [2]. In this case, the
spectrum of displacements are not resolvable since the
wave vector is spatially varying and hence the propagator
P sð~R; DÞ becomes weighted by a kernel with a quadratic
phase factor in ~R. To increase the level of diffusion weight-
ing, and hence the size of imposed phase in q-space, we can
increase the pulse width to d0 as in Fig. 1. In this case, the
region of equal diffusion weighting that maximizes the
resolvability of the higher displacement time regimes is pro-
portionally reduced to D0 � d0 � D� d. For a pulse of
duration d, this steady-state condition persists for a dura-
tion D� d in which random displacements in this interval
are weighted equally such that the detected signal is
attenuated in direct proportion to the displacement dis-
tance ~R. However, all displacements that take place before
this steady-state condition is reached are weighted in
E sequence. In this case, the magnitude of q is non-zero in the interval D
fter the first pulse are weighted more than those close to the 180� pulse as
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proportional to the gradient strength and hence the ability
to uniquely resolve spin displacements is completely lost. In
addition, according to Eq. (3), the spectrum of resolvable
diffusion dynamics is low pass filtered to that of slow diffu-
sion dynamics. It is clear from Fig. 1 that in order to
increase the level of diffusion weighting while at the same
time ensuring that the wave vector q is the same across
the entire displacement spectrum, we require that g!1
while d! 0. This also allows the spectral sampling of the
entire diffusion spectrum. This is indeed the q-space
approach first proposed by Callaghan et al. [7]. In what fol-
lows, we show that these impulse gradients can be replaced
with chirped gradients which are shown to approximate the
short pulse field gradient requirement when integrated over
a few cycles of the chirp waveforms as long as the chirp
bandwidth spans the underlying frequency spectrum of
the diffusion dynamics.

Let us start with a standard oscillating gradient spin–
echo (OSGE) diffusion sequence first proposed by Gross
and Kosfeld [3] and shown in Fig. 2, with the duration of
each gradient d, chosen to be an integral number n of cycles
of the oscillations in the restrictive media.
Fig. 2. Oscillating gradient spin–echo
Each cycle of the oscillating gradients acts as a bipo-
lar pulse so that there is a positive gradient lobe fol-
lowed by a negative gradient lobe of equal area. After
each cycle, stationary spins have their magnetic moment
rephased whereas diffusing spins lose coherence. The
degree of dephasing of the net transverse magnetization
is proportional to the mean square displacement of the
spins during the effective diffusion time Deff which for
OSGE sequence is 3

8
T , where T is the period of oscilla-

tion [3].
The diffusion coefficient is probed in the form DðT Þ,

where T is the period of gradient oscillation. By probing
over a range of DðT Þ spanning a spectrum of gradient oscil-
lating intervals T, the behavior of diffusing spins from short
to long periods can be used an indicator of tortuosity
changes and compartmentalization [5,6].

Note that in the conventional PGSE, the echo time D and
the effective diffusion time t are mutually dependent
(t ¼ D� d

3
, where d is the duration of the rectangular PGSE

gradient pulses). However, in OGSE, the diffusion-sensitive
magnetization helix is present only during the application of
the two gradient pulses (d), but not during the time interval
sequence for diffusion probing.
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between them (D� d) as in the case of PGSE. Therefore,
unlike in the PGSE diffusion experiments, molecular dis-
placements in OGSE are measured on time scale of its dura-
tion d rather than the time separation between the gradient
pulses. This enables the measurement of the diffusion at
shorter time scales than those accessible in PGSE measure-
ments. The accessibility of short time diffusion makes OGSE
an attractive option for studies of restricted diffusion,
packed bead flow, or intermediate chemical exchange as well
as velocity autocorrelation function in the presence of slow
motion or restricted diffusion [4].

Now consider the case of q-space imaging where the
PGSE sequence consists of idealized delta functions as
shown in Fig. 3. The first delta function produces an
almost instantaneous phase shift, depending on the posi-
tion of each spin in the direction of the field gradient at that
time. Stationary spins have their phase unwound by the
second delta-function gradient whereas migrating spins
have their random displacements encoded in the residual
phase of the echo. The instant nature of the diffusion gra-
dient ensures that all spins are encoded at the same time
and uniformly.
Fig. 3. Evolution of the magnetization wave vector q in the case of delta-functio
diffusion-weighting duration D.
It is instructive to look at the temporal evolution of the
diffusion-sensitizing magnetization helix represented by the
q-wave vector as before but with gðtÞ ¼ dðtÞ:

qðtÞ¼
Z t

0

cpðt0Þgðt0Þdt0 ¼ c
Z t

0

pðt0Þdðt0Þdt¼
cpð0Þ for t1< t6 t2;

0 elsewhere:

�
ð5Þ

In this case, only diffusion changes in position occurring
between the two gradient pulses are important and are
equally weighted regardless of when they occur within the
D time interval. By contrast, whereas in the conventional
PGSE, a change in position affects the echo amplitude more
when it occurs near the 180� pulse than if it occurs near the
90� pulse or just before the echo, in the idealized delta gra-
dient pulse case, all random displacements within the obser-
vation interval D are equally weighted by the impulse
gradient pulse at the beginning of the interval. Since the
ensemble of diffusion displacements are equally weighted
during the observation interval D, the propagator can thus
be recovered by inversion of Eq. (4). We can also visualize a
scenario where we employ a crafted gradient waveform that
n diffusion gradient showing a uniform weighting of spins during the entire
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discretely samples qðtÞ. Ideally we would sample the diffu-
sion displacements during the observation time with a comb
of delta-function weighting pulses. In practice, a version of
a sinc sampling function would approximate this weighting
in the integration kernel-more on this later.

Let us return to the use of oscillating gradients as dif-
fusion sensitizing gradients. Consider a simple sine wave
of frequency f1. Its q wave vector is a sampling kernel
in q-space which asymptotically approaches a delta func-
tion for d! 0 as the number of cycles N !1. During
the diffusion probing oscillatory pulse period, only dis-
placements on the order of the frequency of the pulse will
be recorded. If the diffusion time is too short, then the dis-
placements will exceed the coherence observation time of
the probing gradient period and the overall impacted
phase on such displacements will be zero. From the evolu-
tion of the q wave vector we can surmise that the random
displacement’s inverse of the step time (s�1

c ) must be
within the bandwidth of the diffusion-sensitizing gradient
pulse bandwidth. Higher frequencies of the pulse corre-
spond to probing fast diffusion time regimes while corre-
spondingly lower frequencies probe the slow diffusion
regime. We can thus tailor the diffusion gradient to a
range of time scales allowing the inverse imaging of the
underlying restricting geometry [4].
Fig. 4. Timing diagram of proposed diffusion-sensitizing sequence showing
spectrum.
A discretization version of this approach that allows
probing of a range of diffusion time scales leads us to the
chirp diffusion weighted gradient approximation developed
here. This sampling ensures that a whole spectrum of dis-
placements within the observation time D are equally
weighted by the phase of the sensitizing pulses.

To fully appreciate the role of the chirp in sampling q-
space, consider its coverage of q-space. As in the OSGE
case, the period of each resolvable gradient oscillation fre-
quency governs the effective diffusion time regime probed.
As the gradient oscillation frequency decreases, the effec-
tive diffusion probing time Deff increases corresponding to
the tracking of long diffusion time species. Conversely, at
higher gradient chirp frequencies, the effective diffusion
time decreases allowing the probing of the short time dif-
fusing spins. We can thus discretely probe the entire spec-
trum of diffusion regimes using such chirped gradient
waveforms. We generalize here to the case of chirped diffu-
sion gradient waveforms (Fig. 4) which registers diffusion
spins from the slow to the fast time regimes as the chirp
sweeps over its frequency range. The wave vector q of the
diffusion-sensitizing magnetization helix in this case is thus
given by:

qðtÞ ¼ g
Z t

0

cpðt0Þe�i2pjt02 dt0 ð6Þ
the chirp gradient waveforms that are designed to encode the diffusion
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a solution of which is derived in the next section. We show
analytically that in this formulation, the q-space interpreta-
tion of the diffusion propagator approach falls out
naturally in the high chirp rate limit. This chirped gradient
form has a Fourier transform relationship to the
diffusion propagator similar to that of the delta-function
formulation.

The extent of diffusion spectral sampling of the various
encoding gradients (PGSE, OGSE and q-space) in compar-
ison to the chirped gradient scheme proposed here is shown
in Fig. 5. In a spin–echo diffusion gradient experiment, sen-
sitization to diffusion arises from sampling the spectral
density of the motion with a function Sðw; tÞ, which is char-
acteristic of the gradient encoding spectrum. In the ideal-
ized case with two delta-function gradient encoding, the
sampling is over all possible diffusion rates in the sample,
Fig. 5d. The proposed chirped gradient encoding generates
discretized approximations to this condition as determined
by the chirp extent and is shown in Fig. 5c.

The high frequency diffusion sampling peaks in the spec-
trum of the diffusion-sensitizing gradients become nar-
rower as the number of oscillation cycles, n, increases
and as n!1, the expression for Sðw; tÞ reduces to a linear
combination of delta functions. For a chirped diffusion
Fig. 5. Spectrum of the diffusion-sensitizing gradient showing range of diffu
oscillating gradient encoding pulse (OGSE) (c), chirped gradient pulse (c) and i
possible diffusion time scales. (d) The spectral response shows the range diffu
delta-function gradient encoding (d) probes all time scales while the conventi
changes and OGSE (b) probes diffusion time constants that are resonant with t
the chirp gradient approach (c) can be made to asymptotically approach the c
resolved by using a coincident RF pulse to amplify the diffusion phase encodi
gradients, we have that for large n, and for an evolution
period t,

Sðw; tÞ ! 2pg2
XN

m¼0

1

w2
m

tdðw� wmÞ ð7Þ

and the attenuation exponent in the diffusion equation can
be thus written as:

aðtÞ ¼ c2g2
XN

i¼0

1

2w2
i

tDðwiÞ ð8Þ

which is essentially the product of DðwÞ with the power
spectrum density of the applied gradient. This spectral
range should ideally coincide with the spectral range of
the diffusion dynamics of the full diffusion tensor matrix.

Note that a depends on the product ðg=wiÞ2t. Unfortu-
nately, for chirp diffusion gradient encoding, on increasing
the modulation frequency in order to scan higher frequen-
cies, it is necessary to similarly increase the gradient ampli-
tude g in order to maintain the attenuation of the echo.
Hence, a chirped gradient encoding scheme will show more
sensitivity to low frequency diffusion dynamics.

To compensate for this loss in effective gradient strength
due to chirping, the gradient amplitude is linearly increased
sion spectrum sampling in case of: (a) pulsed gradient experiment (b),
dealized delta encoding approach corresponding to the interrogation of all
sion time scales probed by the various sensitizing techniques. Ideally, the
onal PGSE approach (a) is dominated by low to DC diffusion temporal
he oscillating gradient frequency. By sweeping over a range of frequencies,
ase in (d) but at the expense of diffusion encoding sensitivity. This issue is
ng.
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with frequency in a modified approach herein referred to as
the modified chirped gradient spin–echo (MCGSE). This
idea further developed in the next section.

1.1. Modified chirped gradient spin–echo (MCGSE)

On increasing the diffusion gradient modulation fre-
quency in order to scan higher frequencies, it is necessary
to similarly increase the gradient amplitude g if the attenu-
ation of the echo over the diffusion bandwidth DðwÞ, is to
be retained. To address this problem, a modified chirped
gradient spin–echo (MCGSE) is proposed such that:

GðtÞ ¼ g
ðwo þ 2pjtÞ

w1

cosðwot þ pjt2Þ ð9Þ

so that the chirp rate given by:

j ¼ w1 � wo

2pr

where w1 and wo are the maximum and minimum frequen-
cies, respectively, of the chirped gradient. The gradient
wave vector qðtÞ is then given by:

qðt0Þ ¼ c
2p

Z t0

0

GðtÞdt ¼ cg
w1

sinðwot0 þ pjt02Þ ð10Þ

so that the b-value is then given by:

b ¼
Z ts

0

q2ðt0Þdt0 ¼ cg
w1

� �2

ðII1 þ II2 þ II3Þ ð11Þ

where

II1 ¼ r� 1ffiffiffiffiffiffi
4j
p ½cosðEÞ½CðF Þ � CðGÞ� þ sinðEÞ½SðF Þ � SðGÞ��

II2 ¼ D sin2ðAÞ

and

II3 ¼ �2 sinðAÞ 1ffiffiffiffiffiffi
2j
p ½cosðBÞ½SðcÞ � SðDÞ� � sinðBÞ½CðcÞ

� CðDÞ��

with the parameters: A ¼ worþ pjr2, B ¼ w2
o

4pj, c ¼ woþ2pjrffiffiffiffiffiffiffi
2p2j
p ,

D ¼ woffiffiffiffiffiffiffi
2p2j
p , E ¼ w2

o
2pj, F ¼ 2woþ4pjrffiffiffiffiffiffiffi

4p2j
p and G ¼ 2woffiffiffiffiffiffiffi

4p2j
p . with Cð�Þ

and Sð�Þ as two Fresnel integrals defined, respectively, as

CðxÞ ¼
R x

0
cosðt2Þdt and SðxÞ ¼

R x
0

sinðt2Þdt.
For the case when w1 ¼ wo or j ¼ 0, we have:

lim
j!0

b ¼ N
4

cg
wo

� �2

s3 ð12Þ

where r ¼ Ns, which agrees with the expected b-value
formula for an OGSE of cosine modulation.

1.2. Diffusion spectra of MCGSE

The echo amplitude following a diffusion-weighting gra-
dient has a spectral interpretation [9,10] such that the gra-
dient modulation spectrum F ðwÞ of gðtÞ is given by:
F ðwÞ ¼
Z 1

�1
dt0 expðiwt0Þ

Z t0

0

dt00cg00

¼
Z 1

�1
dt0 expðiwt0Þqðt0Þ ð13Þ

In practice, F ðwÞ is a vector, since the gradient is gener-
ally modulated along one axis. As in conventional experi-
ments, we measure DðwÞ, the diffusion tensor projected
onto a unit vector in the direction of the diffusion gradient
pulse.

The wave vector qðt0Þ in Eq. (10) can be written as:

qðt0Þ ¼ cg
w12i

exp½2piðjt02=2þ wot0=2pÞ� � cg
w12i

� exp½2pið�jt02=2� wot0=2pÞ�
¼ q1ðt0Þ þ q2ðt0Þ ð14Þ

Substituting the wave vector into Eq. (13) gives:

F ðwÞ ¼ F 1ðwÞ þ F 2ðwÞ ð15Þ

where F 1ðwÞ and F 2ðwÞ are the Fourier transform of q1ðt0Þ
and q2ðt0Þ, respectively.

Since diffusion weighting depends on jF ðwÞj2, the result-
ing diffusion-weighted echo measurement can be given in
terms of the diffusion spectrum, DðwÞ, as in Eq. (1) such
that SðwÞ ¼ 1

w2 jF ðwÞj2. Multiplying F ðwÞ in Eq. (15) by
it’s conjugate, we get:

jF ðwÞj2 ¼ jF 1ðwÞj2 þ jF 2ðwÞj2 þ F �1ðwÞF 2ðwÞ
þ F �2ðwÞF 1ðwÞ ð16Þ

The cross terms in Eq. (16) were checked numerically
and found to be dominated by the first two power terms.
To further simplify, we will use the relationship between
fractional Fourier transforms and Wigner distributions,
where the Wigner distribution of a function f(t) defined
as [15]:

W ½t; m� ¼
Z

f ðt þ t0=2Þf �ðt � t0=2Þ expð�2pimt0Þdt0 ð17Þ

with m ¼ w=2p.
Using one of the properties of Wigner distributions:

jF ðmÞj2 ¼
Z

W ðt; mÞdt ð18Þ

Eq. (16) can then be expressed as:

jF ðmÞj2 ’
Z

W 1ðt; mÞ þ
Z

W 2ðt; mÞ ð19Þ

Recalling the Wigner distribution of some elementary
functions, f ðtÞ ¼ exp½2piðb2t2=2þ b1t þ boÞ� ) W ðt; mÞ ¼ d
ðb2t þ b1 � mÞ the spectra in Eq. (16) can be written as:

jF ðwÞj2’ cg
w12

� �2 Z
dðjtþmo�mÞdtþ

Z
dð�jt�mo�mÞdt

� �

’ 2
cg

w12

� �2Z r

0

d
m1�mo

r

	 

tþmo�m

	 

dt’ c2g2

w2
12

Z r

0

dðhðtÞÞdt

ð20Þ
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where

hðtÞ ¼ m1 � mo

r

	 

t þ mo � m

Using the scaling property of delta function:

dðhðtÞÞ ¼
d t � m�mo

m1�mo

	 

r

	 

m1�mo

r

� � ð21Þ

We find that the integral in Eq. (20) is non-zero only for
the condition:

t ¼ m1 � mo

m1 � mo

� �
r ¼ w1 � wo

w1 � wo

� �
r

or

w ¼ t
r
ðw1 � woÞ þ wo

in the range:

0 < t 6 r

the former condition is fulfilled only for the frequency
bandwidth:

wo 6 w 6 w1

where wo and w1 are the initial and the final frequencies,
respectively, in the MCGSE and,

jF ðwÞj2¼ c2g2

2w2
1

Z r

0

dðhðtÞÞdt¼
constant for wo6w6w1;

0 elsewhere:

�
ð22Þ

Fig. 5 shows the spectral diffusion sampling functions
for various sensitizing gradient types. The comparison of
the power spectral jF ðwÞj2 in (c) and (a) for MCGSE and
PGSE, respectively, shows the advantage of MCGSE in
covering a required diffusion-sensitization frequency band-
width while the sensitization in PGSE is always centered at
DC and hence insensitive to fast diffusion time constants or
the investigation of short time scale diffusion, compared to
the case depicted in (d) for the ideal d-gradient where it
covers the entire spectrum evenly. We see that even though
the d-gradient evenly probes all diffusion time scales, it is
nevertheless wasteful of power since realistic restrictive
geometries do not have an infinite bandwidth of diffusion
time scales. The MCGSE scheme proposed here addresses
this question by only probing the diffusion time scales rel-
evant to a given restrictive geometry under study and hence
is more robust to practical implementation. The result is an
overall higher power spectral density of the diffusion
encoding gradient for each of the frequencies in DðwÞ of
the restrictive media.

2. Analysis and discussion

In restrictive geometries, the Fourier spectrum of the
confinement space appears explicitly in the measurement,
an effect which has been termed diffusive diffraction. One
of the problems with PGSE q-space diffraction experiments
is the requirement of the scattering formalism for an
approximation of the gradient waveform with two narrow
pulses. In particular, it is assumed that not only is the dura-
tion d of the pulses much smaller than their separation D,
but that the distance diffused during the pulses is small
compared with characteristic dimensions of the pore space
morphology. A number of authors have recently addressed
the issue of q-space diffraction under conditions of finite
gradient pulse widths, both in qualitative terms [12] and
by simulations [11,16]. A significant and successful analyt-
ical treatment of the finite pulse problem was demonstrated
by Caprihan et al. [13] using the approach of multiple
propagators. This approach was much simplified by Calla-
ghan [14] with the echo signal EqðDÞ being expressed as a
product of matrix operators. We use this approach in cal-
culating EqðDÞ for a chirped gradient waveform. This
chirped waveform can be expressed in terms of the multiple
propagators using a descritized envelope function
expressed by N impulses of integer multiple gm at spacing
s such that D ¼ ðN þ 1=2Þs and r ¼ ðM þ 1=2Þs.

Hence:

EqðDÞ ¼ SðqÞ
YM
n¼1

RAðqÞgm

" #
RN�M

YM
n¼1

RAyðqÞgm

" #
RSyðqÞ

ð23Þ

where gm¼roundðGm cosðpjðmsÞ2ÞÞ with Gm¼roundðgmax=
gstepÞ, and roundð�Þ as the round-down operator.

For the planar boundary case, the eigenfunction solu-
tions in the case of perfectly reflecting walls at x = 0, are:

Pðrjr0; tÞ ¼
X1
n¼0

expð�kntÞunðrÞu�nðr0Þ ð24Þ

where

uo¼ð1=aÞ1=2

un¼ð2=aÞ1=2 cosðjpx=aÞ
S¼BS0

A¼CyA0C

R¼ expð�knsÞ
k¼�n2p2Ds=a2

B00¼1=a

Bnn¼21=2=a

C00¼ð1=aÞ1=2

Cnn¼ð2=aÞ1=2

S0n¼
i2aexpðipqaÞð2pqaÞcosðpqaÞ=ðð2pqaÞ2�ðjpÞ2Þ k 6¼0 odd;

2aexpðipqaÞð2pqaÞcosðpqaÞ=ðð2pqaÞ2�ðjpÞ2Þ k 6¼0 even

(

ð25Þ

and

Ann0 ¼
1

2
½S0jn�n0 j þ S0nþn0 �
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Fig. 6. Shows the oscillating of the first minimum in the diffraction pattern of the signal echo around qa = 1 using the chirped waveform gradient at
different chirp rate j = fmax/r (fmax = 68–82 Hz), and fixed gradient duration time r = D/2. The horizontal axis represents the q-value while the vertical
coordinate represents the signal echo amplitude. This result shows that sweeping the gradient frequency achieves the proper pore size parameter at
fmax = 72 Hz as we would expect in the theoretical implementation with a delta-function diffusion-sensitizing gradient. This pore size approximation
oscillates from its true value sinusoidally so that within a chirped bandwidth, the true pore size value can be found at one of the frequencies.
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where (0) and (�) indicate matrix transpose and transpose
conjugate, respectively.

The diffraction pattern for a chirped waveform with
parameters: D ¼ 0:6a2=D; r ¼ D=2 and j ¼ fmax=r ¼ 0
was generated in an experimental setup of a diffusion phan-
tom consisting of two rectangular barriers separated by a
distance a. This special case represents the finite gradient
pulse case. The experimental results show that (see Fig. 6
at different frequencies), the position of the first minima
in EqðDÞ, using MCGSE, equals qa while for the PGSE
approach, it is overestimated to a higher value of qa. This
shift increases with the pulse duration or smaller pore size
when PGSE is employed. This shrinking in pore size has
been discussed by a number of authors [12,16,13]. They
concluded that the finite gradient pulse width effectively
changes the resultant pore shape, making the isolated pores
appear smaller than their actual size. By changing the chirp
rate j, it was found that the position of the first minima
oscillates around the value qa as shown in Fig. 6 and at a
specific rate, it yields an exact pore size as in the case of
q-space imaging with narrow pulse gradients. Hence,
chirped diffusion encoding gradients can be used to scan
the Fourier space of the diffusive media to yield a minima
corresponding to each of the pore geometries in the restric-
tive media.
3. Conclusion

We have proposed a novel diffusion probing method
using chirped gradient waveforms and its usefulness in prob-
ing short time diffusion dynamics verified analytically and
through simulations. An analytical expression for the b-
value of the MGSE approach was derived and shown to col-
lapse to a OGSE experiment when the chirp rate is set zero.

It was shown that using the CGSE diffusion gradients
at a specific chirp rate, determined the underlying pore
geometry, which makes it a practical alternative to the
ideal delta-function pulse gradient. It is the higher fre-
quency lobes in the spectrum of the CGSE that allow
sampling of the short time diffusion components. How-
ever, these higher frequency lobes are generated at ever
decreasing diffusion sensitizing power which reduces the
effective bandwidth of the probed diffusion spectrum
DðwÞ. This consequent reduction in diffusion probing
power inherent in a simple chirped gradient approach is
overcome with the proposed MCGSE encoding scheme
which is shown to be tunable to any desired diffusion
spectral bandwidth.

The chirped gradient approach has the advantage that
the available gradient power is restricted to the inherent
bandwidth of the diffusion dynamics which increases the
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q-value for probing such dynamics. By restricting the spec-
tral bandwidth of the chirp to that of the underlying
diffusion dynamics in the restrictive media, the available
power is distributed only over that frequency range thus
increasing the overall power density. This accomplishes
the same q-space sampling of the underlying diffusion as
a delta-function gradient in this spectral range but with
the practical implementation advantages of using a chirp
and without loss of power in probing unnecessary diffusion
eigenmodes.

By spreading the available gradient power to the spec-
tral range of diffusion dynamics being probed, MCGSE
provides an efficient and practical implementation of q-
space techniques on a conventional scanner.
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